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IMPEDANCE-MATCH AND ELEMENT-PATTERN
CONSTRAINTS FOR FINITE ARRAYS

INTRODUCTION

This report deals with an investigation of mutual coupling in finite and general an-
tenna arrays. The cost of large phased arrays and the need to make arrays conform to
streamlined contours have stimulated interest in arrays of modest size. On the other hand
the simplicity of the infinite-array model is so attractive, particularly in the case of regular
arrays, that the lower bound on the size of arrays for which this model may be usefully
applied is of great practical importance. The element pattern for a single excited element
of an infinite array (in the presence of the remaining elements terminated by loas) is
given by the classic formulas of Allen [1] and Hannan [2,3]. The limiting form :of .cthe.
element pattern resulting when such an array is matched in impedance as a phased array
at all scan angles was given by Wasylkiwskyj and Kahn [4]. Here the limiting form, of
the element pattern is obtained by direct calculation for finite arrays of general configura-
tion. For regular arrays, results obtained for the finite array confirm the lower bounds
on array size obtained from considerations of efficiency in finite-excited infinite arrays
[5]. The infinite array closely models interior elements of arrays larger than 25 elpments
along any diameter.

Good impedance match over a wide range of excitations for all scan angles is fre-
quently claimed, at least as a design objective, for an array antenna. A technique is de-
veloped in the following for predicting the element patterns which would result if any
given array of antennas were appropriately matched in impedance by means of a lossless
feed network designed for this purpose. When the requirement for match is moat broadly
interpreted, namely, as match for all excitations, the form of our result can be anticipated
from the conservation of energy [6].

Consider an array of N antennas as a dissipative N-port with input impedance matrix
Z R + iX. Assume the existence of a lossless 2N-port which, if inserted between the
array and N generators with unit internal impedance, will have the unit matrix as its input
impedance matrix. Designating the column matrix of currents at the antenna ports by I
and that at the input to the matching network by 1, the conservation of energy implies
it I t= itRi. The superscript t denotes the complex-conjugate transpose matrix. BT he loss-
less 2N-port must therefore effect the transformation I = R-1/2 1. The element: paltterns
of the array, matched for all excitations, may be computed from these currents. The
existence of a matching network was demonstrated by Bergfried [71 and Bergftied and
Kahn [8]. The analysis and computational results presented here are based on a more
convenient network structure.

Generally impedance match for all excitations does not constitute an apptopripte
objective. This distinction between match for all excitations and an appropriate ptial

Manuscript submitted March 29, 1976.



WALTER K. KAHN

match is essential in the application of this method to closely spaced arrays. For such
arrays the indiscriminate requirement of match for all excitations leads to difficulties in
tuning and excitation (and in computation) akin to those associated with supergain t9l
The excitations and element patterns derived using partial matching are not simply pre-
dicted by the conservation of energy.

A uniform linear array of infinite line sources will be used to illustrate the general
theoretical results. Since the elements have infinite extent, this array must be considered
as a special case of a planar array; it is the simplest example of such an array. When the
computational results for closely spaced elements are studied, the effect of using an ap-
propriate partial match, as opposed to one for all excitations, is apparent. The element
patterns derived for appropriately matched finite arrays will be compared with those of
an infinite array (the limiting case) obtained by an independent technique.

NETWORK PRELIMINARIES

Connections and Port Normalization Numbers

The desired excitation of a given array of antennas will be supplied from generators
with finite internal impedance through a lossless feed network. It is convenient to be able
to view this interconnection either in terms of voltages and currents or alternatively in
terms of incident and reflected waves. In this section some aspects of the interconnection
process will be reviewed (101.

The interconnection of two 2-ports is shown in Fig. 1. In terms of voltage and cur-
rents with polarities and directions shown in the diagram this interconnection clearly
requires

V= Vt . (la}

I -. (lb)

From the diagram it would appear just as clearly for incident and reflected wave ampl-
tudes a and b that

Fig. 1-Interconaection of two 2-ports

2
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a = , ...:: .4 (2a)

b = a' . .. i .' (2b)

However, when these incident and reflected wave quantities are defined with respect to
complex normalization numbers, the defining relations being

2aIg = V + ZgI, (3a)

2b IR = V - SI, .(3b)

the relations (2) must be viewed with some caution.

Figure 2 presents the physical interpretation of the defining relation (3a). When
Eg= 2aN/l-, this relation is the Kirchhoff-loop equation for the circuit shown.. Eyvdently
Z must have the value Z = V/I. The average power transferred from the generator into Z
is, algebraically, ... .. ..

P Re (V*I) = a12 - 1b12 (4)

Thus maximum power is transferred to Z when b = 0. From Eq. (3b) this implies

+ = = Z :(5)

in agreement with the principle of conjugate impedance match.

Let us now check the consistency of relations (1) and (2). Direct substitution in
(3) yields .. E .

2b'v-g = V1' - ZgI', (6a)VI + z,*i'. ... (.. b)

These relations are of the same form as (3) except that ZZ replaces Zg. That is, the
"evident" interconnection relations (2) hold only when the complex normalization num-
bers Zg and Zg are understood to be complex conjugates of one another. . . .a~~ ~~~~~~~~~~~~~~~~ .......: ...

- b. . .. .. ... ..,

Fig. 2-Equivalent circuit for interpretation I .... ........ ..:
of normalization numbers Z.

3 : :: '; . :::

3~~~~~~~~~~,0"";:



WALTER K. KAHN

In the sequel it will be assumed that the port normalization numbers Z4 are either
real or that (when an identification such as b' with a is made) the appropriate conjugate
relation between the normalization numbers Zg is maintained.

Representations of the Scattering Matrix and Scattering-Transfer Matrix

The scattering matrix relates incident and reflected wave amplitudes. Corresponding
with an impedance matrix Z,

2R 1 2 b = (V-Z1) = (Z- oI,

2Rl12 a - (V+Zglil = (Z+Zg)i.g

(7a)

(7b)

One eliminating I

2Rg12 b = (Z - Zg(Z + ZgY1 2R'1 2a

or

b = [R-112(Z-z_ )(Z+ zg1Rg/2]a

= R-J1 2 [i - 2 Rg(Z + ZgY)-] Rg12a

= [I - 2RI12 (Z + ZgY'FA ti2] a.

The scattering matrix

S =R- 11Z(Z-Zg)(Z+Zg- 1 R 112

-01=- 1 _ .}-z +n-l 2= ---2~~g Ltg
is symmetric if Z is symmetric, as is most easily seen from the second form of (8>.

Consider the 2N-port network shown in Fig. 3. The incident and reflected wave
amplitudes are ordered into column vectors a and b, so that

/ aa

ag

n ba b
anld b = N -)- I (a>

where

a -(a, az ...a N1

and

(9c>ai = [UN+1 aN+2 . a2Nj 

4
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Fig. 3-The reversed 2N-port

Ag

(1) _

(2)

(3) -

NI -

. . .

(N*3)... ..... ....... .. . .

(2N)

(N+).

(N+3).

Wt3.. ......
.... .. .... .. ...

.... ....... ..

(ZN)

_ ..... .. .....

h _ ....... .......

in which Aa and ad denote the row vectors which are the transpose of the column vectors
aa and a: respectively, and where be and B denote similar row vectors. Then:'.

_ - -i-4 - Ii = Sa .\ Sa : S 00 8 /
'(.10)

A 2N-port closely related to S is the reversed 2N-port, that is, the 2N-port obtained:when
the network is turned around (physically, as is often possible) leaving port designations
fixed in place. Thus old port 1 becomes new port N + 1, etc. (Of course, if the port
designations are kept fixed, attached to the network, the scattering matrix cannott change
when the network is moved.) ... ... ...

It follows that the scattering matrix of the new network may be inferred from (10).
The new column vectors a' and b' are ......

b = = _ - -= b
\be b \aI

... . .. ... 1 .. ~ 1
.... ...... I .. I

and

5

REVERSED
2N- PORT

... ... .... ............ .. _. ...:- �'I I. ........ I. .... .. ... .. ..... .. .

9qa

ba
b = -

bo
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a' = (, -)=(-a-) = (la

where

/ 1\
Hence b= Sa implies b' - 5S3R a' or

SI As = I =ee) (124

Note that in this instance

I(

Attention is now turned to the scattering-transfer matrix. The scattering-transfer
mSat'lix of a g uren Zj-tJrtU retaca L jc atiipttut es Wa ''a L tie aOI Li \1abrL=v

aa and ba with a0 and bp), where now a and b' are amplitudes associated with ports I
through N of a succeeding 2N-port connected to the given 2N-port at ports N + I through
2N. This is illustrated in Fig. 4. The scattering-transfer matrix T, may also be found in
terms of the elements of S. By definition

- TS ---¶, (14>b, l baI
and from (10) and Fig. 4

and

a., I I The scat t- (- -r --o e on e n a f h5

The scattering-transfer rnatrix is obttained on eliminatintg a from the above,

6
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gea

I - bc

(11 -

(2) -

(31 -

0(N) -

be 

a abe

Fig. 4-Conventions for scattering-transfer representation

T Ia -\ / I b -e I S \ //1
1 /p \ j ' ae 1 5 e0 /

e0In the important special case 5 aea or.: = 0.

(so St o)When uch a netwo k is ossles an re i r c l h c tei g m ti en h r f ru i

. . ....... .. ...
. ...... .......
. .. ...... .... ..

: . : .... .... . ....... .

. . .... .... ... . .

.... ...... ... .. . ....... .... . ....... 

When such a network is lossless and reciprocal, the scattering matrix being .thie frnu
tary and symmetric,

7
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S or = S = s84> (17)

An appropriate interconnection of ideal transformers leads to a purely real scattering
matrix Sag = otI It follows that such a network is "undone" by cascade connection/3w
with its reverse; that is,

TsTiS¶o = 1 (18)

when S.a contains only real elements.

The scattering matrix of a 2N-port ornprising a set of distinct lengths n of' lossless
transmission line, each with characteristic impedance (resistance) equal to the correspond-
ing port (real) normalization number, is

4- is 3 o J (19aJ

where 09 is the real diagonal matrix

0 = diag [KC1Qj, K 2 2 , KQ N] (19h)

The corresponding scattering-transfer matrix is therefore

+ ~~~~~~~~~~(20)

In general this matrix is not real; hence cascading with its "reverse" does not "undo" the
effect of the original network.

Consider the 2N-port (20) to be terminated by an N-port with scattering matrix S.
From (10) one has

O -O~ a.'
--- 4- ~~~~~~~~(21)bg b a S ) ( a

so that

= (ep£ sc- )a, (22>

8
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EIGENWAVE ANALYSIS OF ARRAYS

Uniform Versus General Arrays

For sufficiently large arrays the characteristics of the array (and in particular the
eigenvalues) ought to approach those of the infinite array in some sense. Since the eigen-
values for a uniform infinite array of reciprocal antennas are degenerate, we may expect
to see degeneracy or near degeneracy in the large finite array. This degeneracy:gmay cause
difficulty with some computational algorithms and certainly complicates perturbation
analyses. .. .1 ....

The uniform circular array shares many of the features of large linear arrays. The
eigenvectors for large arrays approach those of the infinite linear array, and the elgen-
values exhibit reciprocity degeneracy (in pairs).

In comparison with uniform arrays of regularly spaced identical antennas, general
arrays of nonuniformly spaced antennas have been little used. For this reason, awl to
dispose of the complicating factor of near degeneracy of the eigenvalue pro1blemto. be
solved, this report focuses on the uniform case. This is accomplished through symmetry
analysis. From the standpoint of computation, then, each of the subspace arrays4odd
and even) of a uniform array constitutes a general array in which degeneracies ase only
accidentally. The straightforward analysis which is applicable in each subspace:theriefore
also covers the case of the general nonuniform array.

The uniform planar array and the circular cylindrical array generally possess a 1800
rotation, reflection, or equivalent symmetry. The eigenvalue problem may be separated
in accordance with the invariant subspaces of this symmetry. The formal analysof this
symmetry is taken up next.

I ULwo QYlr1fleltMy 'tUIdyasiRzi

Consider a uniform linear or uniform circular array with ports numbered as shown
in Fig. 5 comprising N o 2L + 1 elements. The twofold symmetry operation is represented
by the matrix ..........

o H5' ° I I 0 (23)

0 1 I .I . . ....

operating on a column matrix of terminal quantities ordered as a, ....

7. .. ... .

a (ao) (24a)

ap/

9
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*0G Q 0 0 0 0 0 0 0 0 ...

... -4 -3 -2 -t 0 -1 2 +3 44 . . . PORT NO

I

Fig, 5-Uniform linear array and uniform circular array

where

a = ta-La-L+I -a- 2 a-11

and

ad~ = nala2 ... a-IaLl -

The tilde denotes the transpose. The L-dimensional submatrix AL is

o0 o ... 0 I

I o 0 ... 1 0

UL | ... - I * I

0 1 ... 0 0

1 0 ... 0 0

10

(24b)

(24e)

(254
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The transformation of terminal quantities

iaa' = a.

where

Y =L1
= _.

completely reduces the symmetry operator Y to the form J':

5' = 5 Y 5 =

/ 1L I 

0 I 1 I1 /

°I ° I -1L

Note that 5½= T= 5 1

The effect of the transformation 5i on the scattering matrix
trated for a circular array with N = 5 elements and a linear array
For the circular array the scattering matrix has the form

/ I I
aR a I'Y I 

/3 a h I 3: i y

-yl 7 > 1 I y I y

I IjS ' 7 1 7a 1 I 

I I
\13 I 'Y I 0

1 

0

7,Xal

_a 

where the ports are numbered as shown in Fig. 5 and Eqs. (24).
primed terminal quantities according to (26),

. .... .....
..... .. .. .. . .

... , :: :;: . .(28)

. .. . ..... ... ...

of an array will be illus-
with N = 3 elements.

.. ... ..... ..... .. .. :

.: . :....... '.. .. 
' (29a)

When transformed -to

SI' = 9ss

a + P

I + 7
0= 0

ax + 'y -yd N O O 0

a+7 y ¶I 0 0

O/3v'- U I 0 0

0 0 ! a - A - 7

0 0 '/ 3-' a- I/

....... E ....

J. .. .

2 b)

11

....... . ..... .

. . ........ ........ . :

.. ........ .

(26)

01L I 1L 

_ _1 _N _ I 1_ 

\ L l ° i -a

...........

. .. .. ....

..... .... :7 ,:-,-;;0, 1��



WALTER K. KAHN

The scattering matrix for a uniform array with N = 3 elements has the form

6 I; (304

where again the ports are numbered as shown in Fig. 5 and Eqs. (24). When transformed
to primed terminal quantities according to (26),

S -Js osy 00 1 i 0 1.6…I| \
0 0O 

(30b)

(SlaY

Consider now the conventional set of eigenvectors for a circular array

t(m) =[ ttna} , -L < V < L,

and

trm _ exp J 1 2 mQ)P1N7 (sib)

These also constitute the conventional form of excitation for the linear phased array,
although they are eigenvectors of such an array, only for the case £, m . The latter
can be deduced from considerations of symmetry. The complex-conjugate eigenvectors
are degenerate; that is, the eigenvalues belonging to distinct complex eigenvectors (m) and
(-m) are the same. The same pairing is accomplished by the operator i. Tf also effects
a change of sign in the oxnnont in Ern f(1l thrinmuh n rhnncw in the sign of . TIt fol
lows that

(n ) I (± 5 ywt(m) -L < m < L, (32)

is also an eigenvector (possibly the same eigenvector) of the circular or infinite linear
array. Therefore these new eigenvectors of the array are by construction (a) real and
(b) eigenvectors of if. A different labeling n is usually convenient for the vectors u(">.
Thle corresponuence of n aad m is in any evenu established by kaer.

The eigenvectors of if are classed as either even (belonging to the eigenvalue +1> or
odd (belonging to the eigenvalue -1): the vector

un) = I (1 + :)t(m)
2f

(334a

is even, and the vector

12
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U~n) = 1 (1- )tfm) I ::(33b)

is odd.

The operators (1/2)(1 ± i) of Eqs. (33) are readily shown to be projection operators
associated with orthogonal subspaces whose direct sum is the complete space. .They are
projection operations (idempotent): .' ' :': . '

2

[1~ (1 -if)] ....... (.. .... ...... 4. .f .::.:(:34a)= 2(1 +± i) 

They are orthogonal:

(34b)+ (1 +) -1 (1- if) = (1-f) 2 (1 + 51) = 0.

And they are complete:

(1 + 1) + 1 (1 ) = 1. (34c)

To make these results concrete, the form of the matrix transformation which sorts
out the eigenvectors according to the above scheme is computed explicitly. Recl that
5f = 5- 1 and that

5fu'~n) - ~n 

therefore

U (n) = _2- i(1 ± if)t(m)

(35a)

..:.. . (..
- :A: (35b)

The transformation if sorts any even portion of u(n) into the first L + 1 rows:othe Yovec-
tor u'(n) and any odd portion of u(') into the last L rows of uO(n). When the matrix:
product in (35b) is computed using the explicit representations of 51 (Eq. (23)),-*ad
i (Eq. (27)), one findsI1-(1 + if )

2~~~~~

and

*

1L

r - - - _r - _ _

t- - -T - -
I ° I -
l -Il TT --

13

.0 :: : ::::6a)
. ... .. ... . .: ...

.. . ..... ..... ........

..... ... .

.. .... ...... .

.. ............

... ..... .. . . .. . -.

(36b)

..- � __ .: ..I. . .

. : ..... .1 . ........... . ......... ..... .. .:. .. .
. ..........: ...........
. . .................
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From the placement of zeros in (3Sa) and (36b) it is clear that (1 + i) has projected out
the even part of t(m), so that the last L rows of uO(n) are necessarily zeros, and that (I - !1
has projected out only the odd part of t(ml, so that the first L + 1 rows of uO(m) are nec-
essarily zeros.

In summary the preceding analysis shows that the degenerate eigenvalues of the cir-
cular and infinite linear array are split between the two invariant subspaces belonging to
i and that the two separate reduced subspaces will contain only accidental degeneracies.
The eigenvectors u'(, properly renormalized where necessary, may be employed together
with straightforward nondegenerate perturbation theory to solve for the eigenvectors of
finite linear arrays.

CALCULATION OF ELEMENT PATTERNS FOR SULTABLY MATCHED ARRAYS

Excitation and the Radiation Fields

An elementary radiator of an array is usually specified in terms of its properties
when isolated from the array environment. In a dipole array, for example, the elementary
dipole is commonly specified in terms of the properties of the isolated dipole. This in-
formation is in general not sufficient to permit calculation of an element pattern in the
array environment. However, when all antennas but the one antenna element excited are
terminated in some fixed reactance, the element pattern in the array environment may be
nearly the same as the isolated antenna pattern. An array of small dipoles is one example.
When all dipoles hut one are open-circuited, the pattern of the single dipole is nearly that
of an isolated dipole. An array of slots in a large ground plane is another. When all slots
but one are short-circuited, the pattern of the single excited slot is nearly that of a single
slot in a ground plane. For canonical minimum-scattering antennas [111 the element
patterns in the open-circuited array environment coincide with the isolated-element pat-
terns. Without any restrictions on antenna type it will be assumed in this section that
the radiated field of a single excited element in the open-circuited-array environment is a
known complex vector function of the direction angles 0 and ¢

[68(0 fp) (37)

and is normalized so that with unit incident power excitation the radiated power is

Prad -Jr[7(o fk:2ds

f (6- (asI>

-o + Zg

where ZI is the input impedance to the excited element and d2 is the element of solid
angle sin 0 dOdo, A common alternative normalization fixes on the radiation amplitude
produced by a unit input current; this field will be distinguished by an I subscript, f; (U, 3).
The corresponding power normalization is then

14
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Prad = f 1I/j)(O, k)12 d2 = Re Z.

Since for this open-circuit-environment condition

2x fka = V + ZgI

= (Zo + Zg)I,

it follows that

* :(39 }

. ..: ........... ..

f 40)
. .......... . .

...... . ....... .

(41)

.. ...... .. .. .: ..... - .

o) -' Z + ()i" 0 (0 0)=2v' f (l0 
In the special case Zo =

)fj)(o 0) = R f7()(0, ). (42)

ef o 4 .A .. . . .i .. s .1 .. .s s ] s s s s .*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.. . ........ .. 

Since X ,tu, 4In 1is the pattern racliatec by the nth elemet when all te remainmig
currents are zero (open-circuit condition), one may employ straightforward superposition
to obtain the field for any set of currents. In particular, if the correct i, corresponding
to matched terminations at each element have been found from the mutual coupling
constraints (V = ZI or b = Sa), then the field radiated by some element in the&terminated
array environment for that element is

f(Oq) L
n = -L

ZOn + Zg L

24~~~~l ? n(¢s. 0 (43)

In the terminated-array environment the correct currents produced by a real Generator
are most easily expressed in terms of scattering quantities

gIn = a, - bn

.L

E (5nm Snm~am
m=-L

= an'

Nnf.t the differenro hotwnnn +hn nnonnirnir+ onnditionse (A40 ad tha +on,4na+oLni*
condition expressed by (44). Using (44),
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-1-* Zon,+ Zg L
[ (0,4) 2R= ' > 1 f(o )(0Az)an. (45)

S fni=-L

The Modified Array

The input impedance matrix for an array of antennas, considered as a dissipative
N-port, generally has both resistive components Rmn and reactive components Xmn:

X

Yn = -'mnJn
n=1

where

Zmn = Rmn + JXmn-

The resistive components are directly related to the element patterns in the open-circuited
environment through the conservation of energy-

Rmne = Ref4w bO2A (6 w) 47 (0, ')d2. (47)}

tt'L ingallrany cUIxipuxietiU whe I o CaII urIque zeiawUOMn7ip vwyii lute pctu>ciln, dILUUL%
in special cases the imaginary components may he connected with the analytic continua-
tion of the real patterns into the complex angular domain [111. These reactive compo-
nents may obviously be canceled through a lossless reactance network, one form of which
is shown as

jB = j[BRj = +[-2Rt

in Fig. 6 and is described in more detail subsequently. The combination of the array plus
this cancellation network is termed the modified array. The modified array has the real
input impedance matrix R = [RmnI.

The lossless reactance cancellation network in Fig. 6 is formed by attachment of
quarter wavelengths of transmission line at each antenna port. if the transmission lines
all have the same characteristic impedance Rt, then the input short-circuit admittance
matrix of the array plus transmission lines is

Y -2z = rA 2 i7tl (4S

At this point then the shunt susceptance network JR = -j Im Y is connected to produce
the desired cancellation effect. The addition of a second set of quarter-wavelength trans-
mission lines, also of characteristic impedance R,. reconverts the residual real part of the
admittance matrix, Re Y, into the impedance matrix R = [Rmnj = R2 Re Y.t

16
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INPUT TO MODIFIED ARRAY

Fig. 6-Modified array

Matching Network for the Modified Linear Array

The general scheme of the matching network which will be employed-in :oliur -calcula-
tions is shown in Fig. 7. There are three main sections: the first section (diawn as three
large rectangles) is a real transparent 2N-port, the second section (drawn a ...small rec-
tangles) consists of N disjoint lossless two-ports, and the third section (drawna:s:three
large rectangles-a mirror image of the first section) is a real transparent 2N-port-the
"reverse" of the first section. If the two-ports of the second section were.t .diec con-
nections, the first and third sections would "undo" one another. Excitation supplied at
the left then would appear at the correspondingly labeled antenna input port atthe right.
This apparently trivial point of notation is essential to preserve the physical significance
of our results. We now specify each of these sections in more detail.

The large rectangle of the first section of Fig. 7 separates all array excitations into
even and odd portions as discussed earlier. The scattering matrix of this 2.- 12 is

S. t5 f one : A::: of (49)

where i, the transformation (26), is such that

17
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-L+i L+2 2 L+3 L+3 2 L42 -L+1

_-1 2L _ L$21t_& 7-t_ 

_ 0l4 2L+2 ---- 2L+2 L+tI2 FL+I O :

* r *Lo S ,=L L2+ 

_ L-1 L4-i UQ-! Z L-1 22L -t L-t - LtN-1 t_ -

_L LL+N 2L 2 -2LN L L

Fig. 7-Matching network for symmetric array

Si SS7 (S- - -- )4 -- (50))

The matrices S(+) and R_) are the even and odd stubmatrices of the antenna-array scatter-
ing matrix S.

The two smaller rectangles of the first section have the 2(L + 1}-by-2(L + 1) scatter-

S (Ft+I _ (Sla)

and the 2L-by-2t scattering matrix

(01

respectively where P } and i}arpe matrices whose columns are the real, normalized
eigenvectors of the even and odd subscattering matrices S(+) and S-) in some arbitrary
(but thereafter fixed) order. For a detailed description of the third section of the match-
ing network, it now suffices to state it is the "reversett of the first section.

The second or middle section performs the matching function. A typical 2-port
section is shown in Fig, 8. The scattering matrix of this transformer matching sedion is

( ±p 1\2 ( 52>~
K 1-p J

where

18
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IMPEDANCE 2 1 - IMPEDANCE
Rg- Qr(±r n))

1 : w

w2 = Qrt± n)}/Rg

Fig. 8-Typical transformer matching 2-port

± =Q(, n) - Rg
p p(±,n) = Qr(±, n) + Rg (53)

The notation Qr(±, n) refers to the input impedance at the nth even (+) or ith<odd" (-
matching two-port, which is connected between the two nth output ports of the networks
$( ) and its reverse. Qr(±' n) is, by construction, the nth even or nth odd : eigevau fof
the modified antenna array resistance matrix R.

For an incident wave a2 at terminal 2 of a matching 2-port, a wave amplitude b1 is
generated at terminal 1 in accordance with (52):

b1 "pal+ y'127W a2 . I ..... (54a)

.. ...: .

As arranged, b1 = a, which means that

: . .-..:... :. (54b)O =sy' 7 a, -pa 2 ;

hence

( p2 1-

a2

1 -
0 -' -f '4 (54G)

'! ""' ' .. 7 . ' I ! ... .. _.

. - ..' ..: .... I. . . :.. .

This is the wave which is incident on the first-section port and results in an-invj0ent wave
on the modified array of e(l - p 2 f- 1/ 2a2 , where e is the eigenvector of R cowsponding
to the port excited by a2 . At the ports of the modified array a reflected wae, p times
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the incident wave, is generated. The currents (44) at the modified array, proportionat to
the difference of incident and reflected amplitudes, are elements of the column matrix

R-112(1 - p)e(1 - p2)1(2 a2 . (55k)

The eigenvectors of the scattering matrix of the modified array S can be calculated
from the eigenvectors of 3. If the matrix eigenvectors of S(+y is 6(+j and of S(_4 Is
$((, ithat is,

=e(+, 1)e(+, 2) ... e(+, L + 1) (56a4

w. -_ [eQ e e 1 -t. l7i O i l * V) , l3

then

[e(-L)e(-L + 1) ... e(0) ... e(L)J

= _ _ _~~F (57)

With these definitions, for arbitrary input a to the matching network, Fig. 7, the
-- currents -atthe inputs -to the -modified-arrayare

/R4 I a b (584

- 1- ,) (1- A2-112 ga

= 1-p)(l + pWfl"12a (58b)

where p is now the diagonal matrix

p = iag [p(-L), ..., p(0), ... , p(Ll (594a

and the matrix Qr is given by

Qr = diag [Q-tLh ... Qr(0)1 ... , Qr(L . (5914

From t -ve defnition of 69, (55ao may 'be rewritten

V- I = R' 2 a (60)

as anticipated.

20



:,, ::: ..1 ! ' . .' '!:E 1. "!. . . . :.

NRL REPORT 8002

Partial Match of the Array

Although an array can be matched for almost all excitations by means of.dthe- feed
network developed in the preceding paragraphs, an exceptional circumstance occuers when
one of the eigenvalues of the resistance matrix is zero or infinite. This can. happen with
an array of lossless antenna elements which actually fail to radiate and therefore:-present
a purely reactive impedance, which case is excluded from further consideration because
of its triviality. Even with an array of bona-fide antennas (antennas which are not purely
reactive) this exceptional circumstance can occur "accidentally." By this is meant an
occurrence which can be removed simply by an infinitesimal perturbation of the-array.
Again, this is of little interest here. However for large closely-spaced reguar arrasa set
of small (or large) eigenvalues occurs in a nonaccidental fashion which conseqwnTtly is of
physical interest.

As has already been mentioned, the characteristics of a large finite array approach
those of the infinite array. In the infinite-array model eigenexcitations produce either
delta-function beams (visible region) or no beams at all (invisible region) [13]. The active
impedance (eigenvalue) corresponding to an excitation which does not place a beam in
visible space is purely reactive. The large finite array with the same spacing does -not
preserve this absolute distinction between visible and invisible regions, because:'the patterns
of any finite array are not indefinitely narrow. Some energy is directed along almost all
real angles. An excitation which would produce in-phase addition only at complex angles
(in the invisible region) in the case of finite arrays radiates into visible space -thiugh a
sidelobe. However the active input resistance corresponding to this condition is much
smaller or larger than unity or Rg. Attempts to realize match in these cases are subject
to limitations closely akin to those associated with the realization of supergain 9]. This
aspect of the match problem will be illustrated later. ...... .. ..... ....:

The matching network, Figs. 7 and 8, leaves the corresponding eigenexoitation un-
affected when the turns ratio of the transformer two-port (Fig. 8) correspondijig.to that
particular eigenexcitation is replaced by a straight connection or equivalently the turns
ratio is set equal to unity: w 1. A wave a, incident at the input to this transformer
produces wave amplitudes ea, incident on the modified array, e being the- eigenvector of
S involved. The corresponding currents exciting the modified array (44) are then
Rj t /2 e(1 - p)al. In general therefore (58) must be replaced by

V/- I a - b : :- (61a)

= 6 ? 6 a, (. 0 ff (61b)

where

? = diag C ( + p~m)) X *--, (1 p.n)) .. ................. ... )

= diag L . .... .., Qrl/2fm) X Q (n) + R -- } ..H * ......................................... .0 (62b)~~~~~~~~~~~~~~~. .... ... .. .... ... .. . ...

=diag [7.. Q7 ()7(62b) QrQB)+ Rgn'.j
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In Eqs. (62) it is understood that the first expression within the brackets applies to eigen-
excitations (eigenvalues) that are matched and the second applies to eigenvalues that are
not matched. The currents (61) are now no longer simply related to R 1 12 and cannot be
found simply from energy considerations.

APPLICATION AND EXAMPLES

The preceding theory will now be applied to a linear array of infinite line sources.
The theory is in no way idmited to uniform arrays, nor are the computations appreciably
simplified by the assumption of uniformity. Uniform arrays are chosen because of their
practical importance and because the comparison of the finite-array results with those ob
tained for the corresponding infinite array [41 is of special interest. Pertinent results ob-
tained in Ref. 4 are summarized in Appendix A for convenience.

Consider an array of line sources distributed along the x axis of a Cartesian coordi-
nate system, each line source being of infinite extent and parallel to the z axis. The pat-
tern of an individual line-source element is isotropic in the xy plane. The line source may
be one of electric current (in which case the electric vector is polarized along the z axis),
or the line source may be one of magnetic current, simulating a narrow slot in a conduct-
ing plane (in which case the magnetic vector is polarized along the z axis). The mutual
coupling between such elements may be computed on the assumption of a single-mode
element [141 or a canonical minimum-scattering antenna [11]. The result for either
polarization is (at appropriate reference planes) [111

Zn= 1, m = n

- (k xm - x n m z n, (63)

where x. is the coordinate at which the line source intercepts the x axis, H( 2} is the
Hankel function of the second kind and zeroth order, and kr is the wave number 2r1X.
The impedance matrix of the "modified array" comprises the real elements

Rmn = 1, m= n ,

-Jo,(kXm - xf), m r n, (64)

where J0 denotes the Bessel function of the first kind and zeroth order.

Figure 9 shows element patterns in the terminated-array environment for the center
elements of uniform arrays as dotted lines. The elements of the array are hD = r radians
apart, and the arrays consist respectively, of 5, 15, and 25 elements. In each case the
cPntpr element is PYritPd Fn, a n inride-nt wave rairrvino unit nnwer In comnarino thp re-
sults obtained with those for the infinite array (Appendix A) it must be remembered that
the infinite-array formulas are conventionally quoted for radiation into a halfspace. Ac-
count of this is taken if the directly computed absolute power patterns are multiplied by
a factor of 2. For uniformity of presentation both the finite-array patterns and the
infinite-array pattern were further divided by kD/7r. This has the effect of normalizing
the element patterns for any spacing. The normalized infinite-array element pattern is

22
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shown as a solid line. It is clear that the element pattern for a matched array approaches
the infinite-array result. The approach is oscillatory (after the fashion of trigonometric
series) rather than smooth. For N = 25 elements the pattern closely follows the infinite-
array result except in the immediate neighborhood of radiation along the plane of the
array, 6 - 90'. This result is in agreement with the expectations based on element ef-
ficiency [51.

Only half of each element pattern is shown in each case, because the power patterns
are symmetric with respect to 6 = 0. In the case of linear or planar arrays, this symmetry
is always a feature of (optimally) matched element patterns, since the currents exciting
each element of the radiating aperture are real (either in phase or 1800 out of phase.
That these currents are indeed real is evident from (601 or (61¾, for a = [rol, that is,
when only the Qth input to the feed network is excited by a unit incident wave.

The element pattern in the terminated-array environment for an edge element of the
N = 25 array is shown in Fig. 10. Its shape is somewhat broadened when referred to a
cos 0 pattern and the peak gain is reduced approximately 0.7 dB.

Element patterns in the terminated-array environment for an array of N Z 25 ele-
ments spaced kD = 4.0 radians apart are shown in Fig. 11 The element pattern for the
center element is shown in Fis. Ila. and the edge effect present at this sacinag is dis-
played in Figs. lib, 1l1, and ld. The center-element pattern in Fig. 11a displays a close
oscillatory approach to the infinite-array element pattern. The sharp break to a null at
34.80 in the infinite-array element pattern associated with the entry of a grating lobe is
evident also in the finite-array patterns. Of course the finite-array element patterns do
not have an absolute null. As before, the largest deviations occur in the neighborhood of
the array face (8 = 9QO). The peak gain of the edge element (Fig. llb) is reduced by am
proximately 0.8 dB. In the second and third element from the edge of the array (Figs.
tlc and l1id) the sharpness of the features associated with entry of the grating lobe appear

a m

z
F, \ '.Fig. 10-Element pattern for the edge element

(k = 12) of a linear array of line sources with
tX:\ 'a FN = 25 elements spaced kD = Or radians apart

e '
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somewhat smoothed. The overall effect of this smoothing is to narrow the main lobe of
the element pattern.

In the preceding examples it was feasible to match the arrays for all excitations; that
is, Eq. (60) could be employed to compute the currents exciting the modified array. For
spacings hD < ir we must be prepared to implement an appropriate partial match.

Consider now a closely spaced array of line sources, with elements spaced kh = 2.0
radians apart. The eigenvalues of the mutual-resistance matrix for the modified array are
listed in Table 1. It is clear that some of these eigenvalues imply active reflection coef-
ficients differing in magnitude only slightly from unity. This is in accordance with our
expectations based on the infinite-array model. In an infinite array with this close spacing
there is a continuum of (eigen) excitations for which the active reflection coefficient nec-
essarily has unit magnitude.

Figure 12a shows the element pattern in the terminated array environment for the
center element of the array when the array is matched for all those eigenexcitations for
which the elgenreflection-coefficient magnitude is Ip(n)I < 0.5. The corresponding range
of eigenvalues of the mutual-resistance matrix is 0.33 < Qr,() < 3.0. The remaining
eigenexcitations of the modified array are left undisturbed. The eigenvalues which were
left unmatched are italicized in Table 1. Consequently 15 of the 25 eigenexcitations
were matched to achieve the pattern shown in Fig. 12a. Note that 15 is nearly the num-
ber of half wavelengths in the aperture: NkD/fr -15.91. The fraction of elements which
may readily be matched is approximately equal to the ideal element efficiency of the cor-
responding infinite array, w = kD/, j5,91.

Figures 12b and 12c show the same element pattern when tolerances on the eigen-
values of the resistance matrix Qr(n) are respectively 0.05 < Q,(n) < 20 and 0.001 K
Q,(n) < 1000. These tolerances correspond to ignoring eigenreflection-coefficient mag-
nitudes ip(n)l > 0&9 and ipon)1 > 0998. When at! eigenvalues are matched, a pattern
with wide oscillations results (Fig. 12d). As total match for all excitations is approached,
the pattern oscillations widen, and a large lobe spills over into visible space near 90?.

Thus the difficulties associated with matching extreme values of the active resistance
Qfn) yare akin to those involved in the attainment of supergain. Supergain is evidenced

Table 1-The 25 Eigenvalues Qr(n) of the Mutual-Resistance Matrix for a Linear
Array of Line Sources With N - 25 Elements Spaced kD = 2.0 Radians Apart

(The eigenvalues in italics are outside the range 0.33 K Qr,() K 3.0)

[ 3.28225 1.41119 1.07501 '1.00214 6.23879X i0-5

3.18452 1.26061 1.05742 0.862315 2.23549X 10-6

1.85831 1.22749 1.03141 1.83745 X 10V 543821 X It-8

1,79140 1.14601 1.01972 1.83886 X 10-2 3.88444 X 10-9

1.46741 1.12175 1.00759 1.25242 X g-3 1.94222X i 0-9_
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even in the element patterns. The power pattern for an element of the infinite array, as
computed from Hannan's formula, attributes to each element the normal gain hD cos C
associated with the area per array element [21. (For the linear array 2irD/X replaces the
planar-array expression 4xA/X 2 .) Thus power radiated in excess of the power per radian
predicted by Hannan's formula (the solid line in Fig, 12) represents the degree of super-
gain attained. This excess is slight as long as the active impedance mismatch (eigenre-
flection coefficients) tuned out are modest.

DISCUSSION AND CONCLUSIONS

The wider implications of the results presented in this report lie in confirmation that
constraints on array performance predicted by the relatively simple infinite-array model
effectively operate as constraints on the performance of finite arrays in a manner and to
an extent illustrated by the detailed calculations presented. These constraints limit the
attainable element patterns, including specific features of these such as grating-lobe nulls,
and limit the attainable reduction of mutual coupling among antennas by appropriate
feed network design. Confirmation of the effectiveness of these constraints in finite
arrays is required, since the reasoning employed to establish them in the case of the infi-
nate array cannot be carried over to the finite case. Indeed the general physical grounds
for the constraints disappear in the finite array. These physical grounds are replaced by
more complex and special mutual-coupling effects. Consequently the phrase "effective-
ness of the constraints" is used.

Reasoning based on the conservation of energy and symmetry shows that the pattem
of a single element excited by a unit incident wave in the environment of an infinite regu-
lar planar array of identical terminated elements must satisfy [2,31

Ax1 < XCos .(6X)

In particular equality can hold only in the matched case, when the active reflection coef-
ficient (for all elements excited with uniform amplitude and linear phase) is zero. The
form of the element pattern for a matched infinite array is given explicitly by Eq. (Al)
of Appendix A. The generality of the physical grounds is such that (65) applies inde-
pendent of the type of antenna elements employed. This limitation is particularly severe
at wide angles (0 i r/2) in that it entirely precludes radiation parallel to the plane of the
array. The finite arrays of line sources used as examples constitute a particularly rigorous
test of this prediction from fte infinite array mnJoel, sinc indivdully+ the hnesourc
elements radiate isotropically in the plane normal to the line source.

Figure 9 shows the extent to which this infinite-array constraint remains effective.
As is also possible in the case of an infinite array with spacing kD = Ar, where DS = X/2,
each finite array is matched for all excitations of the array. Obviously the constraint
would not apply at all to an array consisting of only a single element. Yet for an array
of only five elements the center element clearly shows the predicted generic behavior. As
one expects, when the number of elements in the array becomes larger, the effectiveness
of the constraint inreasesP Firnirls h VIn gx hant aven in an vedn element the pataern ic
strongly modified in the direction predicted by the infinite-array model.

28
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The element pattern may display relatively sharp dips or nulls. In the infinite-array
model these may be classed as either necessary nulls or removable nulls [4]., rThe latter
nulls are removable in the sense that a feed network exists which can in prin.cipletune
out these nulls. The location of necessary nulls in the element patteiln is0tot 4.u Cu l-
sidering the operation of the antenna as a phased array. Such a null may occur in the
direction indicated by the main lobe whenever a grating lobe just enters visible space
(Appendix A). Figure Ha shows how this feature is effectively reproduced by the center
element of a finite array of 25 elements. Again, even the edge element of the same array
(Fig. lOb) shows the influence of this null, even though the infinite-array modl-cannot
be expected to apply quantitatively near an array edge.

For closely spaced arrays the infinite-array constraints require zero radiationmfor cer-
tain excitations of the array. As has been stated, the general physical groqundsfor, ;hese
constraints do not carry over to finite arrays. Thus the finite array can radiatend ean
therefore in principle be matched) for all excitations. When this match is in fact at.-
tempted, that is, when the high degree of mismatch which replaces the absolute infinite-
array constraint is tuned out, the correspondence with the infinite-array mode i:islost.:
This is illustrated by the element patterns shown in Fig. 12. In Fig. 12a obly .:Osmall :mis-
matches are tuned out, whereas in Fig. 12d match for all excitations has been. obtained
in contradiction to the constraints of the infinite-array model. Figures 12b iand 1:,2o show
various stages between these extremes. In Fig. 12d, as expected, correspondence with the

infinite-ay rvd Unis hugl, 1.os4-tr. nnpart~icln -ar nthe ni el~nfroduceso .nhka"+on1 radish.
tion directed along the array. The generally unsatisfactory nature of this Pattern com-
mends acceptance of the constraints of the infinite-array model in setting design objectives
for practical arrays.

The patterns shown in Fig. 11a suggest another application for suitably matched
arrays. Appropriate placement of the necessary nulls synthesizes a pattern which is ,nearly
constant interior to the nulls and is reduced by 5 dB in the region outside. the null, van-
ishing along the array face.
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Appendix A ;': : 0

ELEMENT PATTERNS OF A MATCHED INFINITE ARRAY n :: :

A single element of an infinite planar lattice of identical elements is:0zextstbY W.;a: 
unit incident wave. The remaining elements (or their corresponding portS atth~iniput to
an interconnecting feed network) are terminated. The feed network has': ,bienmdjused or
tuned so that, if all elements were excited with uniform amplitude and Uiiear;pi'rojressive
phase, the array would be matched at all scan angles. The element pattern produce
under these conditions was found in Ref. 4. A simplified planar array may- bee constructed
as a linear array of sources, each of which has an infinite extent in the directionj normal
to the array axis. For this special case the resulting element pattern is given-by-0 : 

P(O) _-D- (cos O) V1 + Es P(a) (cosO) -m (A)A 

where - 0 
P(0) = the limiting element pattern in the terminated-mray environmentobtained

when the array is matched, ,', :,: 

P(O) = any element pattern in an arbitrarily terminated environment s:,u.ch;.as,.e.g.,;
the pattern of a single excited element of the original (unmatche~d) *rtay.5:..
when all other elements are open-circuited, ': .::.:'':':':: :. ::

0 pattern angle measured from the z axis (in the xz plane), a:-B0 -',. 

Vm= grating-lobe pattern angle defined by the equationi i if0E

sin~m = sin - m- rn=±m +1, +2, _............ , ::: 0 f:00 Ike :f (A2)

DX = spacing along the x axis, and :- ,;;,000: : E:

= wavelength. -- ,,-

The summation in Eq. (Al) extends over all real angles 0 ms m =+1, ±2,, c^., $tis,,,those
values of ml rn # 0. such that 'Il.:,.mul-..:m..i..:. .........

|sin 80-r m 1 . ... 0 ' 0 - (A.)

The most significant feature of Eq. (Al) resides in the singularities of the termn f 
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P(Orn cos 0 (A)

m*O (O Cos5OM

The ratios P(6m)/P(0 ) are shown to be invariant, that is, the same for any element pattern
of a given antenna element independent of termination or (uniform) interconnecting feed
network. Each singularity of (A4) corresponds to a necessary null of the element pattern
in the teerminated-array environment.
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